
## SYNTHESIS OF A URACININE DERIVATIVE via HETERO DIELS-ALDER REACTION $^{1)}$

Richard R. Schmidt and Adalbert Wagner Fakultät Chemie, Universität Konstanz D-7750 KONSTANZ, Germany

Abstract: The regiospecificity of the O-acylated 1-hydroxy-4-amino butadiene derivative  $\underline{3}$  in Diels-Alder reactions with unsymmetrical dienophiles was reversed with the O-silylated butadiene derivative  $\underline{9}$ . This enabled a short synthesis of the racemic uracinine derivative  $\underline{4}$  to be carried out.

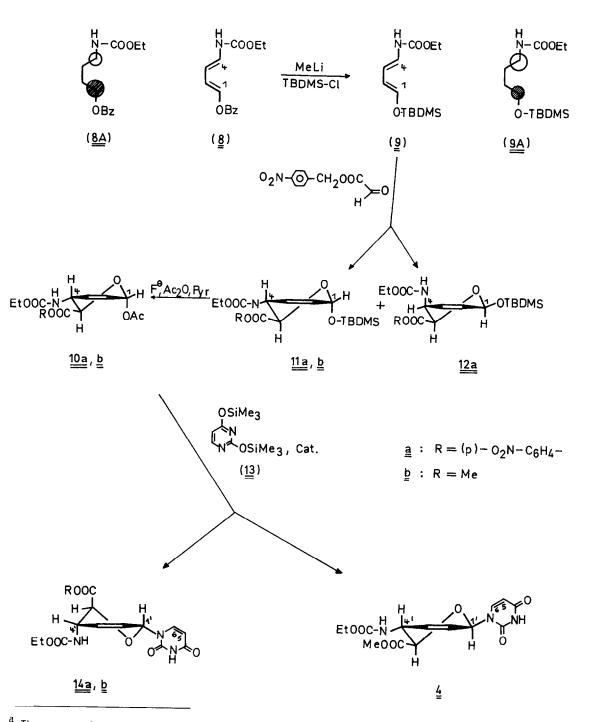
Blasticidin S ( $\underline{1}$ ) is a nucleoside antibiotic produced by *Streptomyces griseochromogenes* with excellent fungicidal properties in rice plants <sup>2</sup>); in addition antiviral and antitumor activity has been reported <sup>3</sup>). Cleavage of  $\underline{1}$  led to blastidic acid ( $\underline{1}\underline{a}$ ), cytosinine ( $\underline{1}\underline{b}$ ), and uracinine ( $\underline{2}$ ), respectively <sup>4</sup>). In the synthesis of  $\underline{1}\underline{b}$  reported by KONDO, NAKAI, and GOTO <sup>2</sup>) tri-O-acetyl-galactal is transformed in many steps into the uracinine intermediate  $\underline{3}$ .



Our investigations into the synthesis of carbohydrates and related natural products via hetero Diels-Alder reactions <sup>1)</sup> lead to a short route for the synthesis of  $\underline{1}\underline{b}$  and  $\underline{2}$ , respectively: Disconnection of the glycosidic bond gives pseudoglycal uronate  $\underline{5}$ ; its retrosynthetic Diels-Alder reaction yields glyoxylate  $\underline{6}$  and a 4-amino-1-hydroxy-butadiene derivative  $\underline{7}$ . The ura-

cinine derivative 4 was obtained as outlined in this retrosynthetic scheme.

The 1-benzoyloxy-4-ethoxycarbonylamino-butadiene  $\underline{8}$  was successfully applied in HOMO-diene-LUMOdienophile controlled Diels-Alder reactions <sup>5)</sup>. However, with unsymmetrical CC-dienophiles and with heterodienophiles the only regioisomer obtained was that predicted on the basis of HOMO of  $\underline{8}$  having a higher coefficient at C-1 than at C-4 (see  $\underline{8}\underline{A}$ ) leading with  $\underline{6}$  to the wrong regioisomers <sup>5,6)</sup>. A reversal of the regiochemistry could be obtained by decreasing the electron release of the 4-amino group or by increasing the electron donating ability of the 1-hydroxy group. Because an overall lower reactivity in Diels-Alder reactions was expected with the first structural variation, the second possibility was investigated by preparation of an Osilylated analogue.


The benzoyl group of § was cleaved with methyllithium (THF,  $0^{\circ}$ C) and the O-lithiated intermediate silylated with tert.-butyl-dimethylsilylchloride (TBDMS-Cl) to give butadiene derivative § (crude 96 %, oil). Hetero Diels-Alder reaction with p-nitrobenzyl glyoxylate (C<sub>6</sub>H<sub>6</sub>, reflux, 40 h) yielded regiospecifically the expected 4-amino-4-deoxy-pseudoglycaluronate derivatives <u>11a</u> and <u>12a</u> (~1:1, 38 %; separation with petroleumether/ethylacetate = 7:3 on silica gel). Therefore the relative electron density in the HOMO at C-1 and C-4 of § is as suggested in <u>9A</u>.

Because 1-O-acylpseudoglycals are excellent glycosylating agents <sup>7</sup>)  $\underline{1}\underline{1}\underline{a}$  was simultaneously desilylated and acylated using a combination of tetrabutylammonium fluoride, acetic anhydride/ pyridine giving the  $\alpha$ -anomer  $\underline{1}\underline{0}\underline{a}$  (43 %, oil). However, N-glycosylation of 2.4-bis-(trimethylsilyloxy)-pyrimidine ( $\underline{1}\underline{3}$ ) with  $\underline{1}\underline{0}\underline{a}$  using antimony pentachloride as catalyst (CH<sub>2</sub>Cl<sub>2</sub>, 25<sup>o</sup>C, 30 min) yielded exclusively the N- $\alpha$ -glycoside  $\underline{1}\underline{4}\underline{a}$  (44 %, mp. 135-136<sup>o</sup>C) <sup>8</sup>.

Earlier observations on the stereoelectronic influence of groups attached to the 6-position on the anomer ratio indicated that  $\beta$ -glycoside formation may be favoured for methyl esters <sup>9</sup>). Therefore  $\underline{1}\underline{1}\underline{2}$  was transesterified with sodium methoxide/methanol giving the corresponding methyl ester  $\underline{1}\underline{1}\underline{b}$  (70 %, oil), which was activated by desilylation and acetylation ( $\rightarrow \underline{1}\underline{0}\underline{b}$ , 52 %, oil). By glycosidation of  $\underline{1}\underline{3}$  (AcOEt, r.t., SbCl<sub>5</sub>, 40 min) the  $\alpha$ - and  $\beta$ -anomers  $\underline{1}\underline{4}\underline{b}$  and  $\underline{4}$  were obtained ( $\sim 1:2, 68$  %;  $\underline{1}\underline{4}\underline{b}$ : oil,  $\underline{4}$ : mp. 139-140<sup>O</sup>C).

The structures of compounds  $\underline{10a}, \underline{b}, \underline{11a}, \underline{b}, \underline{12a}, \underline{14a}, \underline{b}, and \underline{4}$  were assigned by <sup>1</sup>H-NMR-data <sup>10</sup>. Because of the anomeric and/or allylic effect <sup>11</sup> compounds  $\underline{10a}, \underline{b}, \underline{11a}, \underline{b}$  and  $\underline{12a}$  prefer the <sup>0</sup>H<sub>5</sub>-conformation and  $\underline{14a}, \underline{b}$  the <sup>5</sup>H<sub>0</sub>-conformation (see Scheme 2). However, the operation of these effects in <u>4</u> would force all substituents into sterically unfavoured axial positions. This may be the reason for the preference of the <sup>0</sup>H<sub>5</sub>-conformation in <u>4</u> <sup>12</sup>.





<sup>a</sup> The compounds are racemates; only one enantiomer is depicted.

- De novo-Synthesis of Carbohydrates and Related Natural Products, Part 12 This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.-Part 11, see ref. 5.
- T. Kondo, H. Nakai, and H. Goto, Tetrahedron Lett. <u>1982</u>, 1881; Tetrahedron, <u>29</u>, 1801 (1973).
- A. Hirai, S.G. Wildman, and T. Hirai, Virology 36, 646 (1968); N. Tanaka, Y. Sakagami, T. Nishimura, H. Yamaki, and H. Umezawa, J. Antibiotics <u>14A</u>, 123 (1961).
- 4) N. Otake, S. Takeuchi, T. Endo, and H. Yonehara, Tetrahedron Lett. <u>1965</u>, 1411; Agr.Biol. Chem. <u>30</u>, 132 (1966); S. Takeuchi, K. Hirayama, K. Ueda, H. Sakai, and H. Yonehara, J. Antibiotics <u>11A</u>, 1 (1958); H. Yonehara, S. Takeuchi, N. Otake, T. Endo, Y. Sakagami, and Y. Sumiki, ibid. <u>16A</u>, 195 (1963).
- 5) R.R. Schmidt and A. Wagner, Synthesis 1982, 958.
- 6) A. Wagner, Dissertation, Universität Konstanz, 1983.
- 7) R.R. Schmidt and R. Angerbauer, Angew.Chem. <u>89</u>, 822 (1977); Angew.Chem.Int.Ed.Engl. <u>16</u>, 783 (1977); Carbohydr.Res. <u>72</u>, 272 (1979).
- 8) Modification of the reaction conditions led to other byproducts but no  $\beta$ -anomer was formed.
- 9) G. Wulff and G. Röhle, Angew.Chem. 86, 173 (1974); Angew.Chem.Int.Ed.Engl. 13, 157 (1974); R.R. Schmidt, U. Moering, and M. Reichrath, Chem.Ber. 115, 39 (1982), and references.
- 10) The isolated products gave satisfactory analytical and spectral data. <sup>1</sup>H-NMR-data (CDCl<sub>3</sub>, TMS int.): 10a:  $\delta$  6.41 (m,1H,1-H); 6.02 (ddd,1H,3-H; J<sub>2</sub>  $_3$  = 10.0 Hz; J<sub>1</sub>  $_3$  = J<sub>3</sub>  $_4$  = 1.0 Hz); 5.88 (ddd,1H,Z-H; J<sub>1</sub>  $_2$  = J<sub>2</sub>  $_4$  = 2.4 Hz, J<sub>2</sub>  $_3$  = 10.0 Hz); 4.58 (br.dd, 1H,4-H; J<sub>4</sub>  $_5$  = 9.2 Hz, J<sub>4</sub>  $_{\rm A}$  NH = 9.5 Hz); 4.36 (d,1H,5-H). <u>10b</u>:  $\delta$  6.41 (br.s, 1H,1-H); 6.02 (dd,1H,3-H; J<sub>2</sub>  $_3$  = 10.0 Hz); 5.86 (ddd,1H,2-H; J<sub>1</sub>  $_2$  = J<sub>2</sub>  $_4$  = 2.5 Hz); 4.53 (br.dd,1H,4-H; J<sub>4</sub>  $_5$  = J<sub>4</sub> NH = 9.2 Hz); 4.30 (d,1H,5-H). <u>11a</u>:  $\delta$  5.84 (ddd,1H,3-H; J<sub>2</sub>  $_3$  = 10.0 Hz, J<sub>1</sub>  $_3$  = J<sub>3</sub>  $_4$  = 1.7 Hz); 5.78 (dd, 1H,2-H; J<sub>1</sub>  $_2$  = 1.7 Hz); 5.45 (d,1H,1-H); 4.56 (br.dd,1H,4-H; J<sub>4</sub>  $_5$  = J<sub>4</sub> NH = 9.5 Hz); 4.37 (d,1H,5-H). <u>11b</u>:  $\delta$  5.80 (dd,1H,3-H; J<sub>2</sub>  $_3$  = 10.0 Hz, J<sub>3</sub>  $_4$  = 1.2 Hz); 5.76 (d,1H,2-H); 5.46 (br.s,1H,1-H); 4.50 (br.dd,1H,3-H; J<sub>2</sub>  $_3$  = 10.0 Hz; J<sub>3</sub>  $_4$  = 1.2 Hz); 5.76 (d,1H,2-H); 5.46 (br.s,1H,1-H); 4.50 (br.dd,1H,3-H; J<sub>4</sub>  $_5$  = J<sub>4</sub> NH = 9.5 Hz); 4.37 (d,1H,5-H). <u>11b</u>:  $\delta$  5.80 (dd,1H,3-H; J<sub>2</sub>  $_3$  = 10.0 Hz; J<sub>3</sub>  $_4$  = 1.2 Hz); 5.76 (d,1H,2-H); 5.46 (br.s,1H,1-H); 4.53 (m,1H,4-H); 4.48 (d,1H,5-H; J<sub>4</sub>  $_5$  = 3.1 Hz). <u>14a</u>:  $\delta$  7.48 (d,1H,6-H; J<sub>5</sub>  $_6$  = 8.6 Hz); 6.53 (br.s,1H,1'-H); 6.26 (ddd,1H,3'-H; J<sub>2' 3'</sub> = 10.0 Hz, J<sub>3' 4'</sub> = 4.7 Hz; J<sub>1' 3'</sub> = 1.8 Hz); 5.85 (ddd,1H,2'-H; J<sub>1' 2'</sub> = J<sub>2' 4'</sub> = 1.7 Hz); 5.76 (d,1H,5-H); 4.66 (d,1H,5'-H; J<sub>4' 5'</sub> = 4.3 Hz); 4.45 (m,1H,4'-H). <u>14b</u>:  $\delta$  7.46 (d,1H,6-H; J<sub>5 6</sub> = 8.3 Hz); 6.45 (br.s, 1H,1'-H); 6.19 (ddd,1H,3'-H; J<sub>2' 3'</sub> = 10.0 Hz, J<sub>3' 4'</sub> = 4.6 Hz, J<sub>1' 2'</sub> = 1.8 Hz); 5.76 (d,1H,5'-H; J<sub>4 5 6</sub> = 8.2 Hz); 5.68 (d,1H,5'-H; J<sub>4' 5'</sub> = 4.2 Hz); 5.76 (d,1H,5'-H; J\_{4' 5'} = 9.2 Hz).
- 11) R.R. Schmidt and M. Maier, Tetrahedron Lett. 23, 1978 (1982), and references.
- 12) The <sup>1</sup>H-NMR data of the pseudoglycal moiety of  $\frac{3}{2}$ <sup>2)</sup> and  $\frac{4}{2}$  show only slight chemical shift differences.

(Received in Germany 7 July 1983)